Home ProductsSodium Metabisulfite Powder

98.5% Purity White Phosphorous Powder Acid Water Treating Agent CAS 13598 36 2

98.5% Purity White Phosphorous Powder Acid Water Treating Agent CAS 13598 36 2

  • 98.5% Purity White Phosphorous Powder Acid Water Treating Agent CAS 13598 36 2
  • 98.5% Purity White Phosphorous Powder Acid Water Treating Agent CAS 13598 36 2
98.5% Purity White Phosphorous Powder Acid Water Treating Agent CAS 13598 36 2
Product Details:
Place of Origin: Hunan
Brand Name: Kemsky/SGS
Certification: ISO 9001
Model Number: Phosphorus trihydroxide water treating agent
Payment & Shipping Terms:
Minimum Order Quantity: 1 metric ton
Price: usd 1250 per ton
Packaging Details: 25 kgs bag,1000 kgs big bag
Delivery Time: 5-8 days
Payment Terms: T/T , L/C
Supply Ability: 3000 tons per month
Contact Now
Detailed Product Description
Name: Phosphorous Acid Water Treating Agent Other Name: Orthophosphorous Acid Water Treating Agent
Situation: White Powder Purity: 99%,98%
Grade: Industry Grade Packing: 25 Kgs /1000 Kgs Big Bag
High Light:

phosphoric acid fertilizer

,

orthophosphoric acid water treatment

Phosphorous acid H3PO3 CAS No: 13598-36-2

Phosphorous acid H3PO3

 

 

Product Applications

 

Usage: Widely used in the production of phosphite materials, as the raw material in the production of plastic stabilizer in plastic industry, as reducing agent in chemical reaction, it can be used in the synthesis of fiber and pesticide industry, etc

Technical data

 

Items Testing Result
Appearance White Powder
Purity (%) 99.0 %min
Chloride (%) 0.01%max
SO42(%) 0.01%max
PO42(%) 0.2%max
Iron (as Fe, ppm) 0.001%max
 

 

Product Name

 

Phosphorous acid H3PO3 CAS No: 13598-36-2

 

Product properties

 

Appearance: white crystal

Density: 1.65

Melting point:73

Boiling point: 200

UN No:2834

Haradous class: 8

 

 

 

Phosphorous acid is the compound described by the formula H3PO3. This acid is diprotic (readily ionizes two protons), not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds.
Nomenclature and tautomerism


H3PO3 is more clearly described with the structural formula HPO(OH)2. In the solid state, HP(O)(OH)2 is tetrahedral with one shorter P=O bond of 148 pm and two longer P–O(H) bonds of 154 pm. This species exists in equilibrium with an extremely minor tautomer P(OH)3. IUPAC recommends that the latter be called phosphorous acid, whereas the dihydroxy form is called phosphonic acid.[2] Only the reduced phosphorus compounds are spelled with an "ous" ending.
Other important oxyacids of phosphorus are phosphoric acid (H3PO4) and hypophosphorous acid (H3PO2). The reduced phosphorus acids are subject to similar tautomerism involving shifts of H between O and P.
Preparation

HPO(OH)2 is the product of the hydrolysis of its acid anhydride:
P4O6 + 6 H2O → 4 HPO(OH)2
(An analogous relationship connects H3PO4 and P4O10).
On an industrial scale, the acid is prepared by hydrolysis of phosphorus trichloride with water or steam:[3]
PCl3 + 3 H2O → HPO(OH)2 + 3 HCl
Potassium phosphite is also a convenient precursor to phosphorous acid:
K2HPO3 + 2 HCl → 2 KCl + H3PO3
In practice aqueous potassium phosphite is treated with excess hydrochloric acid. By concentrating the solution and precipitations with alcohols, the pure acid can be separated from the salt.
Reactions

Acid–base properties

Phosphorous acid is a strong acid with a pKa in the range 1.26–1.3.[4][5]
HP(O)(OH)2 → HP(O)2(OH)− + H+ pKa = 1.3
It is a diprotic acid, the hydrogenphosphite ion, HP(O)2(OH)− is a moderately strong acid:
HP(O)2(OH)− → HPO32− + H+ pKa = 6.7
The conjugate base HP(O)2(OH)− is called hydrogen phosphite, and the second conjugate base, HPO2−
3, is the phosphite ion.[6] (Note that the IUPAC recommendations are hydrogen phosphonate and phosphonate respectively).
The hydrogen bonded directly to the phosphorus atom is not readily ionizable. Chemistry examinations often test students' appreciation of the fact that not all three hydrogen atoms are acidic under aqueous conditions, in contrast with H3PO4.
Disproportionation

On heating at 200 °C, phosphorous acid disproportionates to phosphoric acid and phosphine:[7]
4 H3PO3 → 3 H3PO4 + PH3
This reaction is used for laboratory-scale preparations of PH3.
Reductions of metal ions

Both phosphorous acid and its deprotonated forms are good reducing agents, although not necessarily quick to react. They are oxidized tophosphoric acid or its salts. It reduces solutions of noble metal cations to the metals. When phosphorous acid is treated with a cold solution ofmercuric chloride, a white precipitate of mercurous chloride forms:
H3PO3 + 2 HgCl2 + H2O → Hg2Cl2 + H3PO4 + 2 HCl
Mercurous chloride is reduced further by phosphorous acid to mercury on heating or on standing:
H3PO3 + Hg2Cl2 + H2O → 2 Hg + H3PO4 + 2 HCl
As a ligand

Upon treatment with metals of d6 configuration, phosphorous acid is known to coordinate as the otherwise rare P(OH)3 tautomer. Examples include Mo(CO)5(P(OH)3) and [Ru(NH3)4(H2O)(P(OH)3)]2+.[8][9]
Uses

The most important use of phosphorous acid (phosphonic acid) is the production of basic lead phosphite, which is a stabilizer in PVC and related chlorinated polymers.[3]
Phosphites have shown effectiveness in controlling a variety of plant diseases, in particular, treatment using either trunk injection or foliar containing phosphorous acid salts is indicated in response to infections by phytophthora and pythium-type plant pathogens (both within class oomycetes, known as water molds), such as dieback/root rot and downy mildew.[10] Anti-microbial products containing salts of phosphorous acid are marketed in Australia as 'Yates Anti-Rot'; and in the United States of America, for example, aluminum salts of the monoethyl ester of phosphorous acid (known generically as 'Fosetyl-Al') are sold under the trade name 'Aliette'. Phosphorous acid and its salts, unlike phosphoric acid, are somewhat toxic and should be handled carefully.
Organic derivatives

The IUPAC (mostly organic) name is phosphonic acid. This nomenclature is commonly reserved for substituted derivatives, that is, organic group bonded to phosphorus, not simply an ester. For example, (CH3)PO(OH)2 is "methylphosphonic acid", which may of course form "methylphosphonate" esters.

Contact Details
NINGBO SOURCECHEM CO.,LTD

Contact Person: Ms.xie

Tel: +8613975090964

Send your inquiry directly to us (0 / 3000)

Other Products